Dependencies

make decides that certain target files need to be re-built when their
dependencies have changed.

make will consider dependencies recursively.

wltest: wltest.o wordlist.o
wltest.o: wltest.c wordlist.h

wordlist.o: wordlist.c wordlist.h

The command
make wltest

will attempt to bring wltest up to date.

It will first make certain that wltest.o and wordlist.o are up to
date.

A non-existent file always needs to be brought up to date.

A file with no dependencies, such as wordlist.h, is always up to
date.

The default target is the first target in the Makefile.



Actions

make will use actions to re-build targets when they are not up to
date.

An action should produce a fresh version of the target file.

wltest: wltest.o wordlist.o
gcc -Wall wltest.o wordlist.o -o wltest

wltest.o: wltest.c wordlist.h
gcc -Wall -c wltest.c

wordlist.o: wordlist.c wordlist.h
gcc -Wall -c wordlist.c

The command make wltest will bring wltest.o and wordlist.o
up to date, and then use the linker command to link them.

The command make wltest.owill bringwltest.c and wordlist.h
up to date, and then use the compiler command to compile it.

The command make wordlist.h will do nothing unless wordlist.h
doesn’t exist, which is an error.



False Targets

False targets can be used to allow a single make invocation to
produce several different targets.

all: client server

The command
make all

will bring both client and server up to date.

False targets can also be used to provide an action that will always
be taken.

clean:
rm -f client server client.o server.o \
common.o util.o

The command
make clean
will always execute the action

rm -f client server client.o server.o common.o util.o



Variables

make provides variables which can be assigned a string.

An undefined variable is considered to contain an empty string.

OBJS=util.o prog.o foo.o bar.o quux.o
all: prog

clean:
rm -f $(0BJS) $(STUFF) prog

prog: $(0BJS)
gcc -Wall $(0BJS) -o prog

The variable 0BJS will contain util.o prog.o foo.o bar.o quux.o.
The variable STUFF is undefined and hence contains the empty string.

Substituting as indicated above, we obtain,

all: prog

clean:
rm -f util.o prog.o foo.o bar.o quux.o prog

prog: $(0BJS)
gcc -Wall util.o prog.o foo.o bar.o quux.o -o prog



Default Rules

make provides certain default rules that provide default depen-
dencies and actions for certain common patterns.

These default rules are made more flexible by the use of variables
such as CC to hold the name of the C compiler.

Often, for some arbitrary foo, the file foo. o is compiled from foo.c.

foo.o0: foo.c
$(CC) -c $(CPPFLAGS) $(CFLAGS) foo.c

Similarly, a program foo is often built from foo.o and some other
objects such as bar.o, baz.o, and quuz.o.

foo: foo.0 bar.o baz.o quux.o
$(CC) $(LDFLAGS) foo.o bar.o baz.o \
quux.o $(LOADLIBES) -o foo



Makefile example

CC=gcc

CFLAGS=-Wall -g

CPPFLAGS=

LDFLAGS=-Wall -g
OBJS=wordlist.o wltest.o wl.o
PROGS=wl wltest

all: $(PROGS)

clean:
rm -f $(0BJS) $(PROGS)

wordlist.o: wordlist.h
wltest.o: wordlist.h
wl: wordlist.o wl.o

wltest: wordlist.o wltest.o



